论文部分内容阅读
针对高光谱遥感影像分类中,传统的主动学习算法仅利用已标签数据训练样本,大量未标签数据被忽视的问题,提出一种结合未标签信息的主动学习算法。首先,通过K近邻一致性原则、前后预测一致性原则和主动学习算法信息量评估3重筛选得到预测标签可信度高并具备一定信息量的未标签样本;然后,将其预测标签当作真实标签加入到标签样本集中;最后,训练得到更优质的分类模型。实验结果表明,与被动学习算法和传统的主动学习算法相比,所提算法能够在同等标记的代价下获得更高的分类精度,同时具有更好的参数敏感性。