论文部分内容阅读
讨论一类特殊类型的超前型自变量分段连续型微分方程的解析解的稳定性,及应用Runge-Kutta方法于该方程所得数值解的稳定性。应用M.Z.Liu等在1990年证明的结果给出了N〉2时解析解渐近稳定的充分条件;同时给出了N=2时解析解渐近稳定的充要条件。利用Or-der-Star和Padé逼近理论,给出了当Runge-Kutta方法的稳定函数是ex的Padé逼近时数值解保持解析解渐近稳定的充分必要条件。