论文部分内容阅读
针对在钢板轧制过程中很难精确预报中厚板的凸度问题,将粒子群算法和神经网络用于辨识中厚板凸度预报模型.结合了神经网络和粒子群算法各自的优点,先采用三层神经网络建立神经网络预报模型,再利用粒子群算法对网络的权阀值进行训练.实验结果表明:相对于BP神经网络凸度预报模型,本文设计的PSO神经网络预报模型在收敛速度和预报精度上明显优于BP神经网络,具有精确性、收敛性和快速性等特点.