论文部分内容阅读
为解决网络攻击流量检测中使用的有监督学习方法严重依赖标签数据规模的问题,针对一种少样本且不均衡的攻击流量检测场景,即训练数据仅包含少量蜜罐捕获的攻击流量且无正常流量,设计了一个攻击流量检测系统,并构建了基于孪生网络和深度学习卷积神经网络(CNN)的网络攻击流量检测模型(CNN-Siamese),以实现少样本且不均衡的攻击流量检测目的;随后为了解决CNN-Simaese在训练样本对构造采样时造成的预测不稳定的问题,结合迁移学习的思路,构建了基于预训练的检测模型(AE-CNN-Siamese);此外,对孪生网