论文部分内容阅读
为了可靠地检出并识别焊缝缺陷,提出了一种基于特征评估和概率神经网络(PNN)的超声自动识别方法.该方法分别采用小波包和经验模式分解法对缺陷信号进行分解,提取原始信号和各分解信号的时域无量纲参数组成联合特征,并计算其评估因子,根据评估因子的大小选取敏感特征作为PNN的输入,从而实现不同焊缝缺陷类型的自动识别.通过对飞机起落架焊缝进行机上原位检测,实验结果表明,上述方法能够从大量的缺陷特征中筛选出敏感特征,克服了人为选择缺陷敏感特征的盲目性,减小了PNN规模,提高了分类准确率和检测效率.该方法在飞机的外场原位