论文部分内容阅读
数据流的流动性与连续性,使得数据流所蕴含的知识会随着时间的推移而发生变化。挖掘数据流中的频繁项集是一项意义重大且具有挑战性的工作。提出一种基于滑动窗口数据流的频繁项集挖掘——FIUT-Stream算法,FIUT-Stream算法分块挖掘数据流,在内存中维持一个滑动窗口数据的概要结构,随着窗口滑动动态更新该存储结构,利用FIUT算法进行频繁项集挖掘。实验表明,该算法能节省内存空间、精确获得频繁项集。