论文部分内容阅读
BP神经网络是一种应用面较广的神经网络,但存在明显缺陷:学习收敛速度慢,易陷入局部极小。遗传算法具有良好的搜索全局最优解的能力。为了提高BP神经网络预测模型在状态预测中的准确性,提出了一种基于遗传算法优化BP神经网络的状态预测方法。利用遗传算法优化BP神经网络的权值和阈值,然后训练BP神经网络预测模型以求得最优解,并将该预测方法应用到Buck输出电压平均值进行有效性验证。仿真结果表明,改进后方法具有较好的非线性拟合能力和更高的预测准确性。