论文部分内容阅读
Hydrophilic 99mTc-EC and nonlipophilic 99mTc- MAMA′-BA complexes, owing to the existing of intact blood-brain barrier (BBB) in vivo, cannot cross from blood to brain. Previous studies showed that insulin is selectively transported by receptor-mediated transcytosis through the brain capillary endothelial wall that makes up the BBB. In this paper, based on the characteristic of the insulin receptor enriched in brain capillary, the complexes of hydrophilic 99mTc-EC and nonlipophilic 99mTc-MAMA′-BA are conjugated to insulin respectively. After purification, the radiochemical purity of 99mTc-EC-insulin and 99mTc-MAMA′- BA-insulin was > 90% and the stability in vitro was good. Expectation for the special formulation can be internalized and endocytosed into the capillary membrane by the vector-mediated brain delivery system, and transported 99mTc-labeled conjugate through the BBB in vivo, thus enhancing brain uptake in mice. The biodistribution results of 99mTc-EC-insulin and 99mTc-MAMA′-BA-insulin in mice indicated that the brain uptake was higher than 99mTc-EC and 99mTc-MAMA′-BA to some extent. The ratios of brain uptake of 99mTc-EC-insulin to 99mTc-EC, 99mTc-MAMA′-BA-insulin to 99mTc-MAMA′-BA were 4―6 at 2 and 3 h post-injection respectively. In conclusion, the given results have illustrated a new way of brain uptake enhancing for nonlipophilic like complexes that have BBB delivery problems. It has a potential value for the ongoing development of 99mTc-labeled radiopharmaceuticals for CNS receptors imaging.