论文部分内容阅读
“转化”是一种非常重要的数学思想和方法,其本质是把原问题尽可能转化为能解决或较易解决的问题。而数学学习的过程就是解决数学问题的过程,解决数学问题也就是一次次从未知转化成已知的过程。在小学数学教学中有目的地渗透转化思想,使学生掌握到转化的方法,不仅有助于学生借助已有的知识经验探索对末知知识的理解,进一步理清数学知识之间的内在联系,而且能提高学生解决问题的能力,促进学生数学思维的发展。
小学数学 数学思想 转化思想
授之以“鱼”,只供一餐之需;授之以“渔”可享用终身。在数学课堂教学中,比传授数学知识更为重要的是数学思想方法。它是数学的灵魂,是数学知识的精髓,是把知识转化为能力的桥梁。要想学好数学,用好数学,就要深入到数学的“灵魂之处”。教师应把隐含在知识中的转化思想加以揭示和渗透,让学生明确转化思想的作用,体会运用转化思想的乐趣,提高学生的数学素养。
一、整体把握,注意挖掘教材中所蕴涵的转化思想
数学知识中概念、法则、公式、性质等都是明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中,关键是教师如何去发现、发掘教材中蕴含的转化思想。为此,我们有必要对此进行系统的梳理,在理清知识网络的同时系统了解数学思想方法在小学各阶段、各章节中的分布,例如小学数学的教学内容中,加法与减法的转化、乘法与除法的转化,分数与小数的转化,除法、分数与比的转化,二维空间(平面图形)之间的转化、三维空间(立体图形)之间的转化、二维与三维空间之间的转化,数与形的转化等等。这样才能结合双基的教学,有意识地向学生渗透,逐步培养他们初步地掌握相关的转化的思想和方法。
数学教学论告诉我们,数学知识是数学思想的载体,进行数学思想方法教学时要注意以数学知识为载体,把隐藏于知识背后的思想方法揭示出来,使之明朗化,这样才能通过知识传授过程达到思想方法教学之目的。因此一节课结合具体教学内容考虑渗透哪些数学思想方法、怎么渗透、渗透到什么程度,老师都应有一个精心的设计和具体的要求。如《平行四边形的面积》的教学可以設计如下相关的教学目标:引导学生经历平行四边形面积计算的探究过程,初步理解化归思想,掌握方法,渗透“变与不变”的函数思想;培养学生分析、综合、抽象、概括和解决实际问题的能力,发展学生的空间观念。
二、探索途径,在教学中灵活应用转化思想
教学实践经验证明,要在教学中灵活运用转化思想,融会贯通、举一反三,其关键在于教师在平时的教学中应根据教学内容和学生的认知特点,探求相应的途径和方法,科学地归纳整理,不断加以完善。
任何客观事物都具有特殊和一般两方面的属性,特殊性既寓于一般性之中,又从某些方面反映着一般性。
运用转化思想,既可以实现一般向特殊转化,使需求解的具有一般性的问题转化为特殊形式来解决;也可以运用特殊向一般的转化,通过解决一般性问题而使得特殊问题得到解决。如,低年级数学中关于数的性质、简单四则运算法则等规律性知识的教学,常常运用不完全归纳法把问题转化为特殊的、个别的应用题或图形、算式研究,通过观察、计算、分析、比较,然后归纳出具有一般性的结论。而关于图形认识的教学,一般都是通过对具体的、个别的图形的分析和研究而归纳出图形共同的本质属性。
整体与局部的转化是转化思想常见的形式之一。运用分解与组合的方法,可以将较复杂的数学问题分解为几个较简单的问题来求解,这些解的组合便是原问题的解;也可以将原问题的局部或某些因数适当变换,转化为新问题来求解。这两种变换的目的都是用分解实现转化的。有时把待求解的数学问题与其他问题结合在一起作综合研究,或通过范围更广泛的问题的求解,以实现原问题的解决,这样的变换就是运用组合实现转化。分解与组合都是使所研究问题的关系或结构发生变换,以创设实现转化的条件。
人的认识总是从简单到复杂、从低级向高级发展的。解决数学问题可以运用高级向低级转化的方法,化繁为简,化难为易。解方程所运用的消元、降次以及解决空间问题的降维等方法,都是高级向低级转化的方法。低年级数学教学中也广泛运用了这种转化形式,使问题得到简化。如“乘法口诀”的教学,要根据乘法的意义,把乘法转化为相同加数求和,从而编出口诀。
三、丰富体验,引导学生自觉应用转化思想
通过平时的教学渗透,可以说学生对转化思想有了一定的认识,但他们的认识是比较肤浅。因此教师还要引导学生在解决问题的过程中进一步体会到应用转化思想学习数学的优势,才能使学生深入地理解转化思想,并且有意识、自觉地加以应用,在其头脑中得以生根开花。
转化的思想凝结着人类在数学思考中的成果和智慧,对儿童思维能力的培养、数学魅力的感悟有着至关重要的启迪作用。在小学数学教学中,转化思想能不失时机地为学生提供多种解题的策略,可以将末知问题已知化,抽象问题直观化,复杂问题简单化,其实“转化”的应用还有很多,例如,数与形的转化,一般与特殊的转化等等,这需要我们一线教师在教学实践中慢慢去积累,去体会。并且在这一过程中,教师还要注重引导学生在解题中自觉地使用转化思想,变学生无意识的用为有意识的用,这样几经打磨之后,学生的思维水平会得到进一步地提升,而且还能增强学生学习数学的信心,并为今后深入地学习数学打下坚实的基础。
小学数学 数学思想 转化思想
授之以“鱼”,只供一餐之需;授之以“渔”可享用终身。在数学课堂教学中,比传授数学知识更为重要的是数学思想方法。它是数学的灵魂,是数学知识的精髓,是把知识转化为能力的桥梁。要想学好数学,用好数学,就要深入到数学的“灵魂之处”。教师应把隐含在知识中的转化思想加以揭示和渗透,让学生明确转化思想的作用,体会运用转化思想的乐趣,提高学生的数学素养。
一、整体把握,注意挖掘教材中所蕴涵的转化思想
数学知识中概念、法则、公式、性质等都是明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中,关键是教师如何去发现、发掘教材中蕴含的转化思想。为此,我们有必要对此进行系统的梳理,在理清知识网络的同时系统了解数学思想方法在小学各阶段、各章节中的分布,例如小学数学的教学内容中,加法与减法的转化、乘法与除法的转化,分数与小数的转化,除法、分数与比的转化,二维空间(平面图形)之间的转化、三维空间(立体图形)之间的转化、二维与三维空间之间的转化,数与形的转化等等。这样才能结合双基的教学,有意识地向学生渗透,逐步培养他们初步地掌握相关的转化的思想和方法。
数学教学论告诉我们,数学知识是数学思想的载体,进行数学思想方法教学时要注意以数学知识为载体,把隐藏于知识背后的思想方法揭示出来,使之明朗化,这样才能通过知识传授过程达到思想方法教学之目的。因此一节课结合具体教学内容考虑渗透哪些数学思想方法、怎么渗透、渗透到什么程度,老师都应有一个精心的设计和具体的要求。如《平行四边形的面积》的教学可以設计如下相关的教学目标:引导学生经历平行四边形面积计算的探究过程,初步理解化归思想,掌握方法,渗透“变与不变”的函数思想;培养学生分析、综合、抽象、概括和解决实际问题的能力,发展学生的空间观念。
二、探索途径,在教学中灵活应用转化思想
教学实践经验证明,要在教学中灵活运用转化思想,融会贯通、举一反三,其关键在于教师在平时的教学中应根据教学内容和学生的认知特点,探求相应的途径和方法,科学地归纳整理,不断加以完善。
任何客观事物都具有特殊和一般两方面的属性,特殊性既寓于一般性之中,又从某些方面反映着一般性。
运用转化思想,既可以实现一般向特殊转化,使需求解的具有一般性的问题转化为特殊形式来解决;也可以运用特殊向一般的转化,通过解决一般性问题而使得特殊问题得到解决。如,低年级数学中关于数的性质、简单四则运算法则等规律性知识的教学,常常运用不完全归纳法把问题转化为特殊的、个别的应用题或图形、算式研究,通过观察、计算、分析、比较,然后归纳出具有一般性的结论。而关于图形认识的教学,一般都是通过对具体的、个别的图形的分析和研究而归纳出图形共同的本质属性。
整体与局部的转化是转化思想常见的形式之一。运用分解与组合的方法,可以将较复杂的数学问题分解为几个较简单的问题来求解,这些解的组合便是原问题的解;也可以将原问题的局部或某些因数适当变换,转化为新问题来求解。这两种变换的目的都是用分解实现转化的。有时把待求解的数学问题与其他问题结合在一起作综合研究,或通过范围更广泛的问题的求解,以实现原问题的解决,这样的变换就是运用组合实现转化。分解与组合都是使所研究问题的关系或结构发生变换,以创设实现转化的条件。
人的认识总是从简单到复杂、从低级向高级发展的。解决数学问题可以运用高级向低级转化的方法,化繁为简,化难为易。解方程所运用的消元、降次以及解决空间问题的降维等方法,都是高级向低级转化的方法。低年级数学教学中也广泛运用了这种转化形式,使问题得到简化。如“乘法口诀”的教学,要根据乘法的意义,把乘法转化为相同加数求和,从而编出口诀。
三、丰富体验,引导学生自觉应用转化思想
通过平时的教学渗透,可以说学生对转化思想有了一定的认识,但他们的认识是比较肤浅。因此教师还要引导学生在解决问题的过程中进一步体会到应用转化思想学习数学的优势,才能使学生深入地理解转化思想,并且有意识、自觉地加以应用,在其头脑中得以生根开花。
转化的思想凝结着人类在数学思考中的成果和智慧,对儿童思维能力的培养、数学魅力的感悟有着至关重要的启迪作用。在小学数学教学中,转化思想能不失时机地为学生提供多种解题的策略,可以将末知问题已知化,抽象问题直观化,复杂问题简单化,其实“转化”的应用还有很多,例如,数与形的转化,一般与特殊的转化等等,这需要我们一线教师在教学实践中慢慢去积累,去体会。并且在这一过程中,教师还要注重引导学生在解题中自觉地使用转化思想,变学生无意识的用为有意识的用,这样几经打磨之后,学生的思维水平会得到进一步地提升,而且还能增强学生学习数学的信心,并为今后深入地学习数学打下坚实的基础。