Heteroscedastic Laplace mixture of experts regression models and applications

来源 :高校应用数学学报B辑(英文版) | 被引量 : 0次 | 上传用户:ninebirds88
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Mixture of Experts(MoE)regression models are widely studied in statistics and machine learning for modeling heterogeneity in data for regression,clustering and classification.Laplace distribution is one of the most important statistical tools to analyze thick and tail data.Laplace Mixture of Linear Experts(LMoLE)regression models are based on the Laplace distribution which is more robust.Similar to modelling variance parameter in a homogeneous population,we propose and study a new novel class of models:heteroscedastic Laplace mixture of experts regression models to analyze the heteroscedastic data coming from a heterogeneous population in this paper.The issues of maximum likelihood estimation are addressed.In particular,Minorization-Maximization(MM)algorithm for estimating the regression parameters is developed.Properties of the estimators of the regression coefficients are evaluated through Monte Carlo simulations.Results from the analysis of two real data sets are presented.
其他文献
.以质量分数30%过氧化氢为氧化剂,钼酸铵和四甲基氯化铵为原料,室温下采用常规的水溶液法成功制备了一种含有过氧与超氧基团的十核钼酸四甲基铵盐[N(CH3)4]4[Mo10O18(OH)4(O2)