论文部分内容阅读
Energy efficiency improvement in building sector has become a real challenge in Morocco, especialy in the north region evolving a rapid urban growth. In this context, using the phase change materials (PCM) in the construction is presented as one of the promising solutions to enhance the thermal behaviour of building envelope. This work aims to investigate the thermal performance of a PCM integrated extal wall and roof under the summer climate conditions of north Morocco. Dynamic thermal characterization methodology is adopted through the calculation of decrement factor (DF) and time lag (TL) parameters. For that, a one-dimensional numerical model based on resistance–capacitance (RC) approach is developed and implicitly solved to simulate the heat transfer process through a wall/roof structure. The model is validated through a new smal-scale experimental device. Different qualities of PCM, regarding its peak phase change temperature, have been evaluated. Moreover, the PCM layer emplacement within the wall/roof structure was evaluated considering two possible configurations. The obtained results show a significative enhancement of the thermal performance of different wall facades and roof through the use of the suitable PCM quality. An appropriate selection of PCM layer emplacement yields an evidenced enhancement in the case of the roof. As for the walls, the integration of PCM from the interior side increase theTL period but has a negative impact on theDF parameter.