论文部分内容阅读
在测试代价敏感决策系统中,测试代价敏感属性约简方法是一种寻找测试代价尽量小的属性集的有效方法.但是,约简后决策系统只保留了简洁完整的信息,其所构造的分类器精度会有所降低.假设我们拥有有限但多于最小测试代价的资源,那么我们可以充分利用这些资源来获得更高质量的分类器.本文针对这种情况做了以下两个工作:1)我们在最小测试代价约筒的基础上添加好属性,寻找一个更好的属性集.2)提出了一种改进的决策树算法,提高分类器质量.该算法选择一些当前最好的属性值来构建结点,这些属性值能够覆盖当前相应的训练集.实验表明:1)改进