论文部分内容阅读
针对目标批次过多导致计算上的组合爆炸问题,提出一种改进并行集中式多传感器不敏近似联合概率数据关联(joint probabilistic data association,JPDA)算法。该算法首先采用基于unscented变换的卡尔曼滤波(unscent-ed Kalman filter,UKF)实现非线性系统中状态估计的递推,然后通过改进的并行集中式方法将数据传至中心,利用改进的JPDA方法进行量测点迹与目标航迹关联。仿真实验表明,该算法在非线性复杂环境中具有较好的数据关联正确率,且计算耗时较集