论文部分内容阅读
The origin and distribution of formation overpressure have effect not only on hydrocarbon migration and accumulation, but also on technique of drilling well. The study and prediction of overpressure are very important in basin analysis. At present, overpressure is mostly predicted by stack velocity. The process in calculating inter-velocity from stack velocity is very complex and inevitably leads to errors. Especially, this method is not available in the case that structural compression contribution to overpressure occurred. This paper introduces a new method, impedance inversion, to predict overpressure, and the principle is discussed. This method is used to predict the overpressure in Kuqa depression, Tarim basin and as a result, the absolute errors are less than 0.1, and relative errors are less than 5 % for predicted fluid pressure coefficients to the drill stem test (DST) measurements. It suggests that this method can be widely used to predict overpressure in foreland basins.
The origin and distribution of formation overpressure have effect not only on hydrocarbon migration and accumulation, but also on technique of drilling well. The study and prediction of overpressure are very important in basin analysis. At present, overpressure is mostly predicted by stack velocity. The process in calculating inter-velocity from stack velocity is very complex and inevitably leads to errors. Especially, this method is not available in the case that structural compression contribution to overpressure occurred. This paper introduces a new method, impedance inversion, to predict overpressure, and the principle is discussed. This method is used to predict the overpressure in Kuqa depression, Tarim basin and as a result, the absolute errors are less than 0.1, and relative errors are less than 5% for predicted fluid pressure coefficients to the drill stem test (DST) measurements. It suggests that this method can be widely used to predict overpressure in foreland basins.