论文部分内容阅读
目的探讨江苏省疟疾发病的季节性规律,为制定防治措施提供科学依据。方法采用余弦曲线拟合方法。结果求得简单余弦函数拟合方程为y1i=0.0833+0.0948cos(ti-229.30°),含第二谐量三角多项式拟合为y2i=0.0833+0.0948cos(ti-229.30°)+0.028cos(2ti-108.80°)。估计每年疟疾发病人数的高峰日为8月21日,疟疾发病人数的低谷日为2月19日。结论余弦曲线数学模型对江苏省疟疾发病人数的拟合结果满意,疟疾发病有明显的季节性,该数学模型可对今后的疟疾发病趋势作预测。
Objective To explore the seasonal pattern of malaria incidence in Jiangsu Province and provide a scientific basis for making prevention and control measures. The method uses cosine curve fitting method. The results obtained the simple cosine function fitting equation y1i = 0.0833 + 0.0948 cos (ti-229.30 °), with the second harmonic trigonometric polynomial fitted y2i = 0.0833 + 0.0948 cos (ti-229.30 °) +0.028 cos (2ti -108.80 °). The estimated annual number of malaria cases is August 21, and the trough of malaria is February 19. Conclusions The mathematical model of cosine curve is satisfactory for the malaria incidence in Jiangsu Province. The incidence of malaria is obviously seasonal. The math model can predict the trend of future malaria incidence.