论文部分内容阅读
Abrading is a very important sub-technology of the surface treatment technology with vast applications in the industry.This study aims at analyzing the inherent laws of friction systems during abrading.In particle flow code modeling,the abrading process can be simplified to the movement of particles in a parallel-plate shear friction system.In this study,the PFC2D software is used to construct the particle flow friction system with the set of parallel plates and the model parameters according to the abrading processing equipment and processing materials,control the simulation of a single variable,and compare the output data to estimate the impact of change of parameters on the force chain.The simulation results show that the shear dilatancy can be divided into three stages:plastic strain,macroscopic failure,and granular recombination stages.The distribution and load rates of the weak force chains depend on the load,velocity,friction coefficient between granules,granular diameter,and number of granular layers.The number of granular layers and the load increase cause the direction of the force chain to be oriented with the vertical direction,and the force chains move toward the horizontal direction as the velocity increases.The increase in load does not cause the shear dilatancy stage to occur;the velocity,friction coefficient between granules,and granular diameter increase cause the shear dilatancy to occur gradually.