论文部分内容阅读
首先借助于一个标准变换将带三阶色散项的修正非线性Schrdinger方程化成一个二阶非线性常微分方程,然后利用推广的双曲函数方法求出了所约化得到的非线性常微分方程的几类精确解,进而得到带三阶色散项的修正的非线性Schrdinger的一些显式精确解,包括精确平面波解、孤立波解、奇异行波解和三角函数周期波解及有理分式代数孤立波解。