论文部分内容阅读
针对执行器带饱和的齐次分数阶线性系统的动态输出反馈镇定问题,基于李雅普诺夫函数法提出了在一个较大的吸引域内分数阶系统的渐近稳定条件,并给出了使得执行器带饱和分数阶线性系统稳定的动态输出反馈控制律设计方法。该非线性输出反馈控制器被转化为线性变参数系统,利用控制器的系数矩阵构造出保持闭环系统的局部渐近稳定条件,然后利用线性矩阵不等式求解获得控制器参数。最后提供了一个数值仿真算例来证明所提方法的有效性。
Aiming at the problem of dynamic output feedback stabilization of homogeneous fractional order linear system with actuator saturation, the asymptotic stability of fractional order system in a large attraction domain is proposed based on Lyapunov function method. DYNAMIC DYNAMIC OUTPUT CONTROL LAW DESIGN METHOD WITH SATURATED FRACTIONAL LINEAR SYSTEMS. The nonlinear output feedback controller is transformed into a linear variable parameter system. The local asymptotic stability conditions of the closed-loop system are constructed by using the coefficient matrix of the controller, and then the controller parameters are obtained by solving the linear matrix inequality. Finally, a numerical example is provided to prove the effectiveness of the proposed method.