论文部分内容阅读
热力耦合作用下岩石的微观结构的变化是引起宏观力学变化的主要原因,从热力耦合作用下花岗岩的流变机制研究出发,建立热力耦合作用下花岗岩的流变模型,从而推导流变本构方程是一种可行的方法。通过热力耦合作用下花岗岩的流变机制研究可知:(1)花岗岩是一种由多种成分构成的具有多晶复合介质特点的脆性坚硬岩石,具有很大的非均质性,内部微观结构可分为晶粒、晶粒边界、晶间胶结物及晶间孔隙,这样的组分和结构将决定花岗岩在热力耦合作用下的流变特性。(2)热力耦合作用下花岗岩流变现象主要是热力耦合作用下岩体内晶间胶结物及晶粒内部产生的位错及微破裂过程,即温度产生的热破裂和应力产生损伤破裂的复合破裂过程,微观结构上的变化使得标志着热力耦合作用下宏观力学特性的力学参数成为温度的函数。因此,将岩石现象流变学与物理流变学结合起来,提出热力耦合作用下岩石热黏弹塑性流变元件力学元件,在广义西原模型的基础上建立热力耦合作用下花岗岩流变模型,推导出可描述150MPa及600℃以内花岗岩的流变本构方程,用试验结果验证了其适用性和合理性。热力耦合作用下花岗岩流变模型的本构方程的建立为高温岩体地热开发钻井施工及其稳定性研究提供了依据。
The change of the microstructure of the rock under thermal coupling is the main reason that causes the macroscopic mechanical changes. Based on the rheological mechanism of the granite under the thermal coupling, the rheological model of the granite under the thermal coupling is established to derive the rheological constitutive equation Is a viable method. Through the study of the rheological mechanism of granite under thermo-mechanical coupling, it is known that: (1) Granite is a brittle hard rock characterized by multi-component polycrystalline composite media with great heterogeneity. The internal microstructure Divided into grains, grain boundaries, intergranular cement and intergranular pores, such components and structures will determine the rheological properties of granite under thermal coupling. (2) The rheological phenomena of granite under thermal coupling are mainly the intergranular cements and intergranular dislocations and micro-rupture processes in the rock mass under the thermal coupling, that is, the composite of thermal rupture and stress rupture The rupture process and the changes in the microstructure make the mechanical parameters, which indicate the macroscopic mechanical properties under thermal coupling, as a function of temperature. Therefore, by combining the rock rheology and physical rheology, the mechanical components of thermovisco-elastic rock rheological elements under thermal coupling are put forward. Based on the generalized west original model, the rheological model of granite under the thermal coupling is established, and the derivation The rheological constitutive equation of granite can be described in the range of 150MPa and 600 ℃. The experimental results verify the applicability and rationality. The establishment of the constitutive equation for the granite rheological model under thermo-mechanical coupling provides the basis for the geothermal development of high-temperature rock drilling and its stability study.