论文部分内容阅读
激光遥感图像的特征分割中受到相似纹理和亮度不均匀性的影响,导致图像的冗余信息较多,为了提高激光遥感图像分割精度,提出基于机器学习的激光遥感图像特征分割方法。构建激光遥感图像分块拓扑结构模型,根据图像的拓扑结构信息进行图像像素分组,根据激光遥感图像像素分组之间的属性差异性进行冗余信息滤波,提取激光遥感图像的超像素特征量,构建像素晶格边界,采用机器学习算法进行图像特征分割的最优边界和网格寻优,实现激光遥感图像特征分割优化。仿真结果表明,采用该方法进行激光遥感图像特征分割的像素分布均匀性较好,对冗余信息的