论文部分内容阅读
这是用化学合成的人工基因在遗传工程研究中取得成功的第二个实例。实验设计的原理和步骤与第一个实例即生长激素释放抑制因子(Somatostatin)的完全相同(见本刊1978年第4期第147页):先用有机化学方法分别合成人工胰岛素的A链、B链的结构基因,然后用一系列DNA重组技术分别连接到大肠杆菌质粒上,这些质粒含有产生β-半乳糖苷酶的乳糖操纵子。当这些质粒转化至大肠杆菌以后,就可以使A、B链的结构基团都在乳糖操纵子调控系统下得到表达合成分别含有A链、B链的多肽分子,用溴化氰处理这些多肽链可以将A链、B链从β-台乳糖苷酶链上切除下来,A链、B链再分别纯化的。最后象我们在人工合成胰岛素工作中一样,将A链、B链通过二硫键联结成完整的胰岛素分子。迄今遗传工程在实际应用领域中所取得的这二个辉煌成果都是借助于有机合成的人工基因,这一事实对我们有机化学工作者是值得引起重视的。
This is the second example of the success of genetically engineered synthetic genes in genetic engineering. Experimental design principles and procedures and the first instance of somatostatin (somatostatin) exactly the same (see 4, 1978, No. 147, page 147): First organic synthesis of artificial insulin A chain were synthesized, The structural gene of the B chain is then ligated to the E. coli plasmids respectively using a series of DNA recombination techniques which contain the lactose operon which produces beta-galactosidase. When these plasmids are transformed into E. coli, the structural groups of A and B chains can be expressed under the regulation of lactose operon to synthesize polypeptide molecules containing A chain and B chain, respectively, and the polypeptide chains are treated with cyanogen bromide A chain, B chain can be removed from the beta-lactamase chain, A chain, B chain, respectively, and then purified. Finally, as we do in synthetic insulin work, link the A and B chains to complete insulin molecules via disulfide bonds. The fact that the two brilliant achievements made so far in practical applications of genetic engineering are based on the synthetic genes of human beings deserves our attention.