论文部分内容阅读
针对血细胞图像中白细胞样本较少和生成细胞图像细节不清晰,导致检测精度较低的问题,提出基于多尺度鉴别器的条件生成对抗网络.该网络通过生成并添加大量逼真的白细胞图像到分类检测网络训练集的方式,实现对血细胞图像的生成和分类检测.在现有条件生成对抗网络真假鉴别器中,引入多尺度卷积核、池化域并在通道上拼接,提升鉴别器对微观细节纹理特征和宏观几何特征的鉴别能力;引入梯度相似性损失函数,以提高生成细胞图像的亮度及边缘清晰度,提升图像的真实感.实验证明,在图像生成阶段,增加多尺度鉴别器和梯度相似性损失函数提高了生成