论文部分内容阅读
受双支持向量机启发,提出模糊双超球学习机FTHLM。该方法试图为每类样本构造一个超球模型,通过构造一对超球模型将两类分类。模糊隶属度函数的引入有效地降低了奇异点和噪声点对分类结果的影响,从而保证FTHLM具有较高的分类效率。在UCI标准数据集上与支持向量机、双支持向量机的比较实验表明,所提FTHLM具有更优的分类能力。