论文部分内容阅读
矢量量化在语音识别中占有重要的地位,传统的LBG算法虽然收敛速度快,但极易陷入局部最优点。论文利用混沌运动固有的随机性与轨道遍历性等优良性质,提出了一种基于混沌寻优的Hopfield神经网络模型,并将其运用于语音识别中的矢量量化。该算法不仅收敛速度快,而且能够获得全局最优解,且初始解对算法的影响很小。实验结果表明该算法综合性能指标优于传统算法,具有较高的应用价值。