论文部分内容阅读
The anisotropy of magnetic susceptibility (AMS) is a quick, effective and sensitive technique used to measure the weakly deformed sedimentary rocks, and also a reliable method to reveal the deforming mechanisms of fault-related folds. In Longmenshan front belt, a typical cross-section of fault-related folds is chosen to study the AMS. A total of 224 oriented specimens have been drilled at 23 different sampling sites which were distributed at the key structural positions of this structural section developed in the Xujiahe formation of the upper Triassic. Six elementary types of magnetic fabrics are recognized and established through this AMS study: 1 ) a sedimentary fabric; 2) an initial deformation fabric; 3) a pencil structure fabric; 4) a weak cleavage fabric; 5) a strong cleavage fabric; 6) a stretching lineation fabric. It has been found that most of magnetic fabrics are characterized by fabrics of weak deformation which belong to the pureshear results of a pre-folding layer parallel shortening (LPS). In the fault-bend fold, almost all magnetic fabrics are the initial deformation fabrics of weak deformation, and denote that the deformation in the forelimb is stronger than that in the backlimb and no finite strain is shown in the footwall. While in the fault-propagation fold, finite strains are concentrated in the trishear zone where magnetic fabric results are approximately consistent with the estimated consequences of the kinematic model. The tectonic stress field indicated by the magnetic fabrics is basically the same along the whole structural section and shows a NW to SE compression and shortening which is accordant with the regional compressive stress field of the Longmenshan fold-thrust belt.