论文部分内容阅读
阐述了复杂网络中节点的中心性(即节点的重要性)对网络鲁棒性的重大影响,评估节点的多种重要性方法各自的优点与局限性.结合逆和指数ISI、度中心性DC以及介数中心性BC提出一种基于两种人工网络和两种真实网络的组合中心性度量方法IDB,利用删除节点前后网络的最大连通子图的变化对节点的重要性进行刻画仿真实验,验证了该方法的可行性和有效性.仿真结果表明,提出的组合中心性度量方法在节点重要性排序性能优于单一节点重要性排序性能.