论文部分内容阅读
In this paper, synchronization for a class of uncertain fractional-order neural networks with external disturbances is discussed by means of adaptive fuzzy control. Fuzzy logic systems, whose inputs are chosen as synchronization errors,are employed to approximate the unknown nonlinear functions. Based on the fractional Lyapunov stability criterion, an adaptive fuzzy synchronization controller is designed, and the stability of the closed-loop system, the convergence of the synchronization error, as well as the boundedness of all signals involved can be guaranteed. To update the fuzzy parameters,fractional-order adaptations laws are proposed. Just like the stability analysis in integer-order systems, a quadratic Lyapunov function is used in this paper. Finally, simulation examples are given to show the effectiveness of the proposed method.
In this paper, synchronization for a class of uncertain fractional-order neural networks with external disturbances is discussed by means of adaptive fuzzy control. Fuzzy logic systems, whose inputs are chosen as synchronization errors, are employed to approximate the unknown nonlinear functions. Based On the fractional Lyapunov stability criterion, an adaptive fuzzy synchronization controller is designed, and the stability of the closed-loop system, the convergence of the synchronization error, as well as the boundedness of all signals involved can be guaranteed. To update the fuzzy parameters, fractional-order adaptations laws are proposed. Just like the stability analysis in integer-order systems, a quadratic Lyapunov function is used in this paper. Finally, simulation examples are to show the effectiveness of the proposed method.