论文部分内容阅读
针对不同分布噪声下生成对抗网络生成样本质量差异明显的问题,提出了一种噪声稳健性的卡方生成对抗网络。所提网络结合了卡方散度量化敏感性和稀疏不变性的优势,引入卡方散度计算生成样本分布和真实样本分布的距离,减小不同噪声对生成样本的影响且降低对真实样本的质量要求;搭建了网络架构,构建全局优化目标函数,促进网络不断优化并增强博弈的有效性。实验结果表明,所提网络在不同噪声下的生成样本质量和稳健性优于目前几种主流网络,且图像质量差异较小。卡方散度的引入不仅提高了生成样本质量,而且提升了网络在不同噪声下的稳健性。