论文部分内容阅读
针对目前端到端可用带宽预测方面研究工作较少的现状,提出一种基于核主成分分析KPCA(Kernel Principle Component Analysis)和最小二乘支持向量机LSSVM(Least Squares Support Vector Machine)的可用带宽在线预测算法ABOP。在采集网络状态样本数据并对其进行相空间重构的基础上,采用KPCA对数据进行降维降噪处理,最后基于LSSVM对可用带宽进行在线预测。为减小计算开销,提出一种递推计算的方法加快模型更新速度,并采用粒子群优化算法对模