论文部分内容阅读
现有的Folksonomy标签推荐系统中,标签模糊会导致系统推荐不准确,并且影响用户建模的准确性,而标签冗余妨碍了对系统的评估。利用K-Means聚类结果抽取模糊和冗余标签时,聚类效果较差导致抽取不准确。提出使用核K-Means聚类处理标签模糊和冗余,通过非线性映射能够较好地分辨、提取并放大样本中有用的特征,提高抽取模糊标签和冗余标签的准确度。实验结果表明:核K-Means聚类对标签和资源的聚类效果更好,抽取的模糊标签和冗余标签也更准确。