论文部分内容阅读
PM_(2.5)已对我国的空气质量构成了严重威胁,对其预警、预报具有重要的意义.由于PM_(2.5)数据同时具有时间与空间属性,而目前的研究缺少对其时空属性的探索与挖掘.以2015年10~12月华北地区58个城市的日均PM_(2.5)浓度数据作为实验数据,利用时空自回归移动平均(STARMA)模型及只考虑时间属性的自回归移动平均(ARMA)模型对PM_(2.5)进行预测,并利用时空克里金插值与只考虑空间属性的普通克里金插值对PM_(2.5)进行插值.结果表明,STARMA模型与ARMA模型的预测相比