论文部分内容阅读
提出了基于模糊C均值能量最小化的活动轮廓模型.该模型首先对待分割图像进行模糊C均值聚类得到前景和背景的模糊隶属度值,然后将待分割目标的局部像素信息和它的隶属度值作为活动轮廓模型的水平集函数的初始值,改进了传统的求解Euler-Lagrange方程使活动轮廓的能量极小化的模型,利用快速算法直接计算模糊C均值能量最小化驱动传统活动轮廓模型的曲线演化.将提出算法与经典的活动轮廓模型分割算法比较,对仿真和临床的超声图像分割实验结果表明:提出算法能很好地分割像素不均匀、边界模糊、含有斑点噪声的超声图像,具有较好的分