论文部分内容阅读
针对现有箱梁分析方法普遍存在的计算精度与计算效率之间矛盾的问题,提出了粗网格划分下的箱梁三维实体有限元分析方法。在充分考虑箱梁受力变形特点的基础上,以修正的Hellinger-Reissner变分原理为基础,通过合理引入非协调位移插值项,构造出直角坐标系下的六面体八结点杂交应力单元8N21β和柱坐标系下的六面体八结点杂交应力单元8N21βc,分别用于粗网格划分下的直箱梁和曲线箱梁的三维实体有限元分析。数值算例表明:8N21β单元和8N21βc单元在粗网格划分下具有较高的计算精度,能有效提高箱梁三维实体有限元分析的计算效率。
Aiming at the contradiction between the computational accuracy and computational efficiency of existing box girder analysis methods, a three-dimensional finite element analysis method of box girder under coarse meshing is proposed. Based on the modified Hellinger-Reissner variational principle, the non-coordinating displacement interpolation term is introduced reasonably to construct the hexahedron eight-node hybrid stress cell 8N21β in Cartesian coordinates and the cylindrical coordinates Department of hexahedron eight node hybrid stress unit 8N21βc, respectively, for the three-dimensional solid finite element analysis of straight box girder and curved box girder under the coarse meshing. Numerical examples show that the 8N21β unit and the 8N21βc unit have a high computational accuracy under the coarse meshing, which can effectively improve the computational efficiency of the three-dimensional solid finite element analysis of the box girder.