论文部分内容阅读
gSpan算法是一种基于频繁图的数据挖掘算法。该算法基于无候选人产生的频繁子图,采用深度优先搜索策略挖掘频繁连接子图。由于其设计结构具有连续性以及无候选人产生,算法的性能得以提高,在执行速度上可以达到前人算法如FSG算法的15~100倍。基于化合物库Chemical-340测试发现,该算法能够以卓越性能有效挖掘频繁子图。该算法可以应用在搜索具有相同子结构的化合物研究中,对相关领域研究发展具有重要意义。