论文部分内容阅读
在社交网络中,大量的垃圾文本严重威胁用户的信息安全与社交网站的信用体系。针对噪声性与稀疏性问题,提出一种基于注意力机制的卷积神经网络检测方法。在经典卷积神经网络的基础上,该方法增加了过滤层,并在过滤层设计基于朴素贝叶斯权重技术的注意力机制,解决了噪声性问题。并且,它改变了池化层原有的策略,采用基于注意力机制的池化策略,缓解了稀疏性问题。结果表明,相对于其他检测方法,所提方法的检测准确率在4个数据集上分别提高了1.32%、2.15%、0.07%、1.63%。