论文部分内容阅读
分类识别是超谱遥感图像的重要研究领域.由于超谱图像空间分辨率低,像元混合的概率大,因此采用单纯的聚类或者监督分类都不能取得好的效果.为了提高超谱图像分类的精度,提出了模糊最大似然分类算法.先用模糊C-均值法对图像进行聚类,再在聚类结果的基础上,参考真实地物图,选择训练样本,用最大似然法进行最终的分类.实验结果表明,提出的算法由于在聚类的基础上选择监督分类的样本,因而获得了关于图像的更准确的信息,最终分类结果比模糊C均值聚类高出34.38%,比最大似然分类高出10.46%.