论文部分内容阅读
室内人数检测是解决公共资源合理分配和利用问题的关键。针对室内人群分布复杂且存在相互遮挡,而传统图像处理算法的准确率较低的问题,使用单次多盒检测器(single shot multibox detector, SSD)结合MobileNetV2与SENet的深度学习目标检测方法,对室内环境下的人进行识别。在微软开源数据集(common object in context, COCO)的基础上,采集室内真实图像制作数据集,进行不同IOU阈值、不同拍摄角度条件下的实验,并部署到计算环境为搭载神经元计算棒(