论文部分内容阅读
非负矩阵分解(Nonnegative Matrix Factorization)算法能为原始数据找到非负的、线性的矩阵表示且保留了数据的本质特征,已被成功应用于多个领域。经典的NMF算法及其变体算法大部分使用均方误差函数来度量重建误差,在许多任务中已经显示出其有效性,但它在处理含有噪声的数据时仍然面临一些困难。Huber损失函数对较小的残差执行的惩罚与均方误差损失函数相同,对较大的残差执行的惩罚是线性增长的,因此与均方误差损失函数相比,Huber损失函数具有更强的鲁棒性;已有研究证明L_(2,1)范数稀疏