论文部分内容阅读
目的快速成像一直是磁共振成像(MRI)技术中的焦点之一,现有多通道并行成像和部分k空间数据重建都是通过减少梯度编码步数来降低数据的获取时间,两者结合起来更能有效地提高扫描速度。然而,在欠采样倍数加高的情况下,依然有很严重的混叠伪影,因此研究一种在保证成像精度的前提下加快成像速度的方法尤为重要。方法基于卷积神经网络的磁共振成像(CNN-MRI)方法利用大量现有的全采样多通道数据的先验信息,设计并线下训练一个深度卷积神经网络,学习待重建图像与全采样图像之间的映射关系,从而在线上成像时,欠采样所丢失数据能