论文部分内容阅读
The major difficulty in achieving good performance of industrial polymerization reactors lies in the lack of understanding of their nonlinear dynamics and the lack of well-developed techniques for the control of nonlinear processes, which are usually accompanied with bifurcation phenomenon. This work aims at investigating the nonlinear behavior of the parameterized nonlinear system of vinyl acetate polymerization and further modifying the bifurcation characteristics of this process via a washout filter-aid controller, with all the original steady state equilibria preserved. Advantages and possible extensions of the proposed methodology are discussed to provide scientific guide for further controller design and operation improvement.
The major difficulty in achieving good performance of industrial polymerization reactors lies in the lack of understanding of their nonlinear dynamics and the lack of well-developed techniques for the control of nonlinear processes, which are usually accompanied accompanied bifurcation phenomenon. This work aims at investigating the nonlinear behavior of the parameterized nonlinear system of vinyl acetate polymerization and further modifying the bifurcation characteristics of this process via a washout filter-aid controller, with all the original steady state equilibria preserved. Advantages and possible extensions of the proposed methodology are discussed to provide scientific guide for further controller design and operation improvement.