论文部分内容阅读
为提高k-means的大数据量计算速度,结合k-means算法计算密集和计算统一设备架构(CUDA)的特点,提出了寄存器优化的并行聚类算法和滑动门并行计算中心点算法。寄存器优化的并行聚类算法优化了聚类步骤,提高了GPU的寄存器利用率,降低了数据获取延迟;滑动门并行计算中心点算法优化了中心点计算步骤,避免了数据同步,提高了GPU计算核心的利用率。实验结果表明,并行优化的k-means算法在GTX480上可获最高约137倍的加速比,有效地提高了k-means算法在单机上的运行效率。