论文部分内容阅读
将主成分分析(PCA)用于遥感傅里叶变换红外光谱(Remote Sensing Fourier Transform Infrared:RS-FTIR)的特征提取,结合学习矢量量化(LVQ)神经网络,实现了PCA-LVQ对大气中的8组分混合体系进行快速定性分析的建模方法。并与单纯的LVQ神经网络、反向传播人工神经网络(BP-ANN)得到的结果进行了比较。PCA-LVQ显示出较好的处理数据的能力,它不仅提高了运算速度,而且提高了模型的预测准确度,分类精度达到91.7%。PCA-LVQ的这一预测精度及运算