论文部分内容阅读
采用积分方程法模拟三维非均匀结构中面波的传播,首先将波场表示成Fredholm积分方程的形式,将观察点置于非均匀体内部,求得非均匀体内部的波场,然后根据积分方程,求得任意一点的散射场。通过背景介质中面波格林函数的适当表示,以及Hankel函数的附加定理,解析地给出了格林函数元素的体积分表达式,避免了Hankel函数的积分奇异问题。最后给出了三维非均匀体对点源激发的基阶瑞利波模式的散射实例。
Using the integral equation method to simulate the surface wave propagation in three-dimensional non-uniform structure, the wave field is first expressed as Fredholm integral equation, the observation point is placed inside the heterogeneous body, and the wave field inside the heterogeneous body is obtained. Equation, find any point of the scattering field. By means of the appropriate representation of the midwaggon function in the background medium and the additional theorem of the Hankel function, the volume expression of the Green function element is analytically given, which avoids the integral singularity problem of the Hankel function. Finally, the scattering examples of the fundamental order Rayleigh wave modes excited by the three-dimensional inhomogeneous body to the point sources are given.