论文部分内容阅读
图像语义分割是计算机视觉领域重要识别任务,其目标是估计图像中的像素级目标类标签。最近,深度卷积神经网络(Deep Convolutional Neural Networks,DCNNs)已经成为解决图像语义分割的主流方法。然而,学习DCNNs需要大量的已标注训练数据(Ground Truth,GT),而现有数据集中的GT在数量和多样性方面因标注成本巨大而受到诸多限制。弱监督方法则考虑利用图像级标签和物体框之类的弱标注信息解决图像语义分割中的标注问题。相比于全监督的像素级图像标注,图像分类的GT(图像