论文部分内容阅读
现实中滚动轴承的工况复杂易变,无法有效地对其进行故障诊断。对此,提出一种基于粒子群优化的细菌觅食(Particle Swarm Optimization and Bacterial Foraging Algorithm,PSO-BFA)和改进Alexnet(第二代卷积神经网络)的滚动轴承故障诊断方法。该方法将Alexnet的结构简化,并分别在其前两层池化层之后添置局部归一化层以降低训练成本;将以小批量样本softmax的交叉熵为损失函数,按Adam迭代优化法小样本、少迭代次数训练改进Alexnet后的变负