论文部分内容阅读
传统的决策树分类方法,对于较小的数据集是非常有效的。但是,当这些方法用于入侵检测系统中时,由于巨大的网络流量,因此,存在着检测性能低和数据挖掘效率不高等问题。为了解决这些问题,提出了加权多决策树模型。将这种方法应用于入侵检测系统中,实验结果表明,该方法提高了入侵检测性能和大容量数据的处理能力。