论文部分内容阅读
为了实现3维人体运动的有效合成,提出了一种基于非线性流形学习的3维人体运动合成框架及算法,并可应用于方便、快捷、用户可控的3维人体运动合成。该合成算法框架先采用非线性流形降维方法将高维运动样本映射到低维流形上,同时求解其本征运动语义参数空间的表达,然后将用户在低维运动语义参数空间中交互生成的样本通过逆向映射重建得到具有新运动语义特征的3维运动序列。实验结果表明该方法不仅能够对运动物理参数(如特定关节的运动位置、物理运动特征)进行较为精确的控制,还可用于合成具有高层运动语义(运动风格)的新运动数据。与