论文部分内容阅读
在信息化评估过程中,传统关联分类算法无法优先发现短规则,且分类精度对规则次序的依赖较强。为此,提出基于子集支持度和多规则分类的关联分类算法,将训练集按待分类属性归类,利用子集支持度挖掘关联规则,通过计算类平均支持度对测试集进行分类。实验结果表明,该算法发现规则的能力和分类精度均优于传统方法。