论文部分内容阅读
As a direct consequence of the orbital height, the integration time in geosynchronous synthetic aperture radar(GEO SAR) with metric or decimetric azimuth resolutions is in the order of several hundreds or even thousands of seconds. With such long integration time, the compensation of residual tropospheric propagation terms poses one of the fundamental challenges associated with GEO SAR missions. In order to better characterise the impact of the propagation errors on GEO SAR imaging, we put forward a model for the simulation of the tropospheric delay appropriate for the accurate simulation of GEO SAR surveys. The suggested model, with a deterministic background component and a random turbulent one, incorporates some of the most recent meteorological data for the characterization of the troposphere. To illustrate the relevance of the derivation, the suggested model is used for performance estimation and raw data simulation of GEO SAR raw data. Substantial conclusion on the system impulse response and the associated calibration requirements is also drawn from the analysis.
As a direct consequence of the orbital height, the integration time in geosynchronous synthetic aperture radar (GEO SAR) with metric or decimetric azimuth resolutions is in the order of several hundreds or even thousands of seconds. With such long integration time, the compensation of residual tropospheric propagation terms poses one of the fundamental challenges associated with GEO SAR missions. In order to better characterise the impact of the propagation errors on GEO SAR imaging, we put forward a model for the simulation of the tropospheric delay appropriate for the accurate simulation of GEO SAR surveys. The suggested model, with a deterministic background component and a random turbulent one, incorporates some of the most recent meteorological data for the characterization of the troposphere. To illustrate the relevance of the derivation, the suggested model is used for performance estimation and raw data simulation of GEO SAR raw data. Substantial conclusion on the system impulse response and the associated calibration requirements is also drawn from the analysis.