论文部分内容阅读
为了研究GRNN和BPNN非线性函数的逼近能力,从数学角度详细阐述了GRNN和基于LM优化算法改进的BPNN的学习过程,编程建立了GRNN和BPNN,并分别用两种神经网络对指定的非线性函数进行逼近实验。仿真结果表明,在训练样本数量相等且中小规模网络的条件下,相对于BPNN而言,GRNN的逼近精度更高、收敛速度更快,具有很好的逼近能力,为解决非线性函数的逼近问题提供了良好的解决手段。